Clifford theory and Galois theory, I

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galois algebras I: Structure Theory

We introduce a concept and develop a theory of Galois subalgebras in skew semigroup rings. Proposed approach has a strong impact on the representation theory, first of all the theory of Harish-Chandra modules, of many infinite dimensional algebras including the Generalized Weyl algebras, the universal enveloping algebras of reductive Lie algebras, their quantizations, Yangians etc. In particula...

متن کامل

Category Theory and Galois Theory

Galois theory translates questions about fields into questions about groups. The fundamental theorem of Galois theory states that there is a bijection between the intermediate fields of a field extension and the subgroups of the corresponding Galois group. After a basic introduction to category and Galois theory, this project recasts the fundamental theorem of Galois theory using categorical la...

متن کامل

Galois Theory

Remark 0.1 (Notation). |G| denotes the order of a finite group G. [E : F ] denotes the degree of a field extension E/F. We write H ≤ G to mean that H is a subgroup of G, and N G to mean that N is a normal subgroup of G. If E/F and K/F are two field extensions, then when we say that K/F is contained in E/F , we mean via a homomorphism that fixes F. We assume the following basic facts in this set...

متن کامل

Galois Theory

Proposition 1.3. Let φ be an automorphism of a field extension K/F , and f(x) ∈ F [x]. Let α1, . . . , αn be the roots of f(x) lying in K. Then φ permutes the set {α1, . . . , αn}. If also the set of αi generate K over F , then two automorphisms φ1, φ2 of K/F which agree on all the αi are equal. Thus, in this case we have an inclusion of Aut(K/F ) as a subgroup of Sym({α1, . . . , αn}) ∼= Sn. P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2008

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2005.12.034